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STABILITY OF DEFORMATION OF ISOTROPIC HYPERELASTIC BODIES

UDC 539.3V. N. Solodovnikov

The equations relating stress rates to strain rates are formulated and conditions of stable deforma-
tion of isotropic hyperelastic bodies are described. Stress–strain relations are presented for pure shear
and uniaxial and axisymmetric loading of a material with a constitutive function obtained by gen-
eralization of the constitutive function of Hooke’s law. In the case of small strains, the diagrams
virtually coincide with the linear diagrams following from Hooke’s law. Ramification of solutions and
transition to declining diagrams begin at the same time, irrespective of values of the constants of the
material, when large stresses of the order of the shear modulus are reached.

1. Determination of Strains. We consider two interrelated (Cartesian and curvilinear) coordinate
systems in three-dimensional Euclidean space. We denote the Cartesian and curvilinear coordinates of material
points in their initial positions at the initial moment τ = 0 by yi and xi, respectively, and those at the current
moment τ by ŷi and x̂i, respectively. The radius-vectors of points, basis vectors, and the metric tensor of the
curvilinear coordinate system vary from R = yiki, li = R,xi = yn,xi kn, and gij = li · lj at the moment τ = 0 to

R̂ = ŷiki, l̂i = R̂,x̂i = ŷn,x̂ikn, and ĝij = l̂i · l̂j at the moment τ (ki are the basis vectors of the Cartesian coordinate

system). The point displacement vectors are u = R̂ −R = wiki = uili = ûil̂i, where wn = uiyn,xi = ûiŷn,x̂i . We

write the basis vectors of the accompanying coordinate systems as R̂,xi = li + un,iln and R,x̂i = l̂i − ûn;il̂n. Here
and below the subscripts and superscripts i, j, m, and n take the values 1, 2, and 3; summation from 1 to 3 is
performed over repeated indices. The variables in the subscript after the comma denote partial differentiation; the
subscript i after the comma or semicolon denotes covariant differentiation with respect to xi or x̂i, respectively.
Covariant differentiation with respect to xi and x̂i is performed in the same curvilinear coordinate system, but the
differentiated vectors and tensors are resolved into the different basis vectors li and l̂i, respectively.

We introduce the Green and Almansi strain tensors e = eijl
ilj and ê = êij l̂

i
l̂
j
, where

eij = (ĝmnx̂m,xi x̂
n
,xj − gij)/2 = (ui,j + uj,i + un,i un,j)/2,

(1.1)

êij = (ĝij − gmnxm,x̂ix
n
,x̂j )/2 = (ûi;j + ûj;i − ûn;i ûn;j)/2,

which represent strain at the same material point at the current moment and are related by the equalities êmn =
eijx

i
,x̂mx

j
,x̂n and eij = êmnx̂

m
,xi x̂

n
,xj . To determine the volume strain εV = J−1, we use the Jacobian of transformation

of the initial Cartesian coordinates to the current coordinates J of the material points expressed in terms of the
components of the strain tensors [1]

J = (detG)−1/2[det (G+ 2E)]1/2 = (det Ĝ)1/2[det (Ĝ− 2Ê)]−1/2, (1.2)

where E = ‖eij‖, Ê = ‖êij‖, G = ‖gij‖, and Ĝ = ‖ĝij‖ are matrices consisting of the covariant components of the
strain and metric tensors (i and j are the row and column numbers, respectively).

Strain rates are determined by two tensors η = ηijl
ilj and η̂ = η̂ij l̂

i
l̂
j

with the components ηij = (vi,j +
vj,i + un,ivn,j + un,jvn,i)/2, η̂ij = (v̂i;j + v̂j;i)/2, which are related by

η̂mn = ηijx
i
,x̂mx

j
,x̂n , ηij = η̂mnx̂

m
,xi x̂

n
,xj . (1.3)
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The tensor η = ė is the rate of variation of the Green strain tensor, v = u̇ = ẇiki = vili = v̂il̂i, and J̇ = Jη̂ii
(the dot denotes differentiation with respect to time τ). The motion of the neighborhood of a material point
at every moment is combined from strain, translation with rate v, and rigid-body rotation with angular velocity
vector ω = ωiki, where ωm = [(v,ŷn · kl) − (v,ŷl · kn)]/2 = (ẇl,ŷn − ẇn,ŷl)/2 (m,n, l is even rearrangement of the

subscripts and superscripts 1, 2, and 3). The Cartesian components of the tensor η̂ = η̂
(d)
ij kikj take the values of

η̂
(d)
ij = [(v̇,ŷi · kj) + (v,ŷj · ki)]/2 = (ẇj,ŷi + ẇi,ŷj )/2.

2. Principal Extension Ratios. The principal axes of the strain tensors e and ê are oriented along the
same material fibers considered in the initial (for e) and current (for ê) states. Values of the principal components
of the tensors ei and êi are related by 1 + 2ei = (1− 2êi)−1 and change within −0.5 < ei <∞ and −∞ < êi < 0.5,
respectively.

We introduce the tensors ε = εijl
ilj , ε̂ = ε̂ij l̂

i
l̂
j
, α = αijl

ilj , and α̂ = α̂ij l̂
i
l̂
j
, which are coaxial with e

and ê. The covariant components of the tensors ε and ε̂ take values of the covariant components of the metric
tensors εij = gij + 2eij = ŷm,xi ŷ

m
,xj and ε̂ij = ĝij − 2êij = ym,x̂iy

m
,x̂j of the accompanying coordinate systems. The

contravariant components of the tensors α and α̂ are equal to the contravariant components of the metric tensors
of the accompanying coordinate systems and to the components of the matrices (G+ 2E)−1 and (Ĝ− 2Ê)−1, i.e.,

αij = [(G+ 2E)−1]ij = xi,ŷmx
j
,ŷm , α̂ij = [(Ĝ− 2Ê)−1]ij = x̂i,ym x̂

j
,ym . (2.1)

The principal components of the tensors εi, ε̂i, αi, and α̂i are related by εi = 1 + 2ei = α̂i and ε̂i = 1 − 2êi =
αi = ε−1

i . For every elementary material fiber, the ratio of the squared lengths in the initial and current states is
|dR̂|2/|dR|2 = εij dx

i dxj/(gmn dxm dxn) (dR = R,xi dx
i and dR̂ = R̂,xi dx

i). For the fibers oriented along the
principal axes of the tensors e and ê, this ratio takes extreme values equal to εi. Thus, the quantities εi can be
considered the squared principal extension ratios. For zero strain of the fiber, εi = 1; for unlimited contraction of
the fiber, εi → 0; for unlimited elongation, εi →∞.

3. Stresses. For an isotropic hyperelastic body, the stresses are determined from the strains at the current
moment at the specified point using the following equations [1]:

σ̂ij = µ̂(α̂inα̂jn − χ̂α̂ij) + pĝij . (3.1)

Here σ̂ij are the contravariant components of the Cauchy stress tensor σ̂ = σ̂ij l̂il̂j , µ̂ = βI−2
1 J−1, χ̂ = 2I1(Υ+1/3),

β = Ψ,Υ, and p = σ̂nn/3 = Ψ,J is the hydrostatic pressure, where Ψ is the strain energy density defined for materials
as a function Ψ = Ψ(Υ, J). The strain-tensor invariants are expressed by Υ = I2 I

−2
1 , I1 = 3/2 + enn = α̂nn/2,

I2 = eij ′ e′ij = α̂ij ′α̂ ′ij/4 (eij ′ = eij − enngij/3 and α̂ij ′ = α̂ij − α̂nnĝij/3) and by Eqs. (1.2) for the Jacobian J .
Equations (3.1) formulated for the second symmetric Piola–Kirchhoff stress tensor σ = σijlilj , where

σij = Jσ̂mnxi,x̂mx
j
,x̂n , σ̂mn = J−1σij x̂m,xi x̂

n
,xj , (3.2)

become

σij = Ψ,eij = 2µ(eij ′ − χgij) + γαij . (3.3)

Here µ = βI−2
1 , γ = pJ , and χ = I1Υ. For small strains, Eqs. (3.1) and (3.3) linearized with respect to strains,

become relations of Hooke’s law σij = 2µ0e
ij ′ + Kenn g

ij with two material constants, namely, the shear modulus
µ0 and the bulk modulus K obtained at the limits µ→ µ0, p,J → K with strains tending to zero.

In (3.1), we convert to a Cartesian coordinate system with the coordinate axes directed along the principal
axes of the tensors ê and σ̂. For the principal stress components σ̂i, we obtain the relations

σ̂i = µ̂εi(εi − χ̂) + p, (3.4)

in which, determining µ̂ and χ̂ and the arguments of the function Ψ, we can use the representations

I1 =
1
2

(εm + εn + εl), J = (εmεnεl)1/2, Υ = 2
(1

3
− εmεn + εnεl + εlεm

(εm + εn + εl)2

)
(m,n, l is even rearrangement of the subscripts and superscripts 1, 2, and 3). As εi > 0, the value of Υ satisfies
the condition 0 6 Υ 6 2/3 and can be regarded as a measure of inequality of the principal extension ratios. In the
space of Cartesian coordinates εi > 0, the value of Υ is the one third of the squared slope angle between the ray
issuing from the origin to the given point εi and the ray along which εm = εn = εl. At εm = εn = εl, Υ = 0 and at
εm = εn = 0, Υ = 2/3.
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For isotropic hyperelastic materials, as an additional condition we can assume that the maximum stress σ̂i
must act in the direction of the principal axis with the maximum extension εi. In this case, in accordance with (3.4),
β > 0.

4. Variation in the Areas of Elementary Material Sites and Normals to Them. In an undeformed
body, we consider a parallelogram site with adjacent sides dR(1) = R,xi dx

i(1) and dR(2) = R,xi dx
i(2) and area dS.

The unit normal to this site N = Nil
i is given by the equality

N dS = dR(1) × dR(2) = (detG)1/2cijkl
k dxi(1) dxj(2),

where cijk is an antisymmetric object [2] that takes values of 1 and −1 if i, j, and k are even and uneven rear-
rangements of the subscripts and superscripts 1, 2, and 3, respectively; otherwise it is equal to zero. At the current
moment, the initial site becomes a parallelogram with sides dR̂

(1)
= R̂,xi dx

i(1) and dR̂
(2)

= R̂,xi dx
i(2), area dŜ,

and unit normal N̂ = N̂il̂
i
, for which

N̂dŜ = dR̂
(1)
× dR̂

(2)
= det Γ̂ (det Ĝ)1/2cijkx

k
,x̂m l̂

m
dxi(1) dxj(2). (4.1)

Determining the matrix determinant Γ̂ = ‖x̂i,xj‖ from (1.1) and (1.2): Γ̂tĜΓ̂ = G + 2E, det Γ̂ =
J (det Ĝ)−1/2(detG)1/2, we obtain [3]

N̂m dŜ = JNix
i
,x̂m dS. (4.2)

At the moment τ , we now consider another site with adjacent sides dR̂
(1)′

= R̂,x̂i dx̂
i(1) and dR̂

(2)′
=

R̂,x̂i dx̂
i(2) and an orthogonal vector whose absolute value is equal to the area of the site:

N̂ dŜ = dR̂
(1)′
× dR̂

(2)′
= (det Ĝ)1/2cijk l̂

k
dx̂i(1) dx̂j(2).

Here dŜ and N̂ can differ from those given by equality (4.1). At the moment τ + ∆τ , the sides of the site

take positions dR̂
(1)′
τ+∆τ = (R̂ + v∆τ),x̂i dx̂i(1) and dR̂

(2)′
τ+∆τ = (R̂ + v∆τ),x̂i dx̂i(2). For the site vector, we obtain

N̂ τ+∆τ dŜτ+∆τ = dR̂
(1)′
τ+∆τ×dR̂

(2)′
τ+∆τ = [(1+η̂mm∆τ)N̂−(v,x̂i ·N̂ )̂l

i
∆τ ] dŜ. From these expressions, letting ∆τ → 0,

we find the rate of variation of the areas of the sites and normals to them:

(dŜ)̇ = (η̂mm − η̂ijN̂ iN̂ j) dŜ, (N̂ )̇ = (η̂ijN̂ iN̂ j)N̂ − (v,x̂i · N̂ )̂l
i
. (4.3)

The rates of rotation of the normals (N̂ )̇ depend on the direction and rate of rigid-body rotation of the neighborhood
of the material point.

5. Determination of Forces. Force vectors acting at the sites represented at the initial and current
moments by the vectors N dS and N̂ dŜ, respectively, are given by

q̂ dŜ = σ̂ijN̂jR̂,x̂i dŜ = σijNjR̂,xi dS, (5.1)

where q̂ is the force density per unit area of the site. At Cartesian sites with normals km = ŷm,x̂i l̂
i

= x̂i,ŷm l̂i, the force

densities take values q̂(m) = σ̂ij ŷm,x̂jR̂,x̂i . The projections of the reduced vectors onto the normals and tangents to

the sites σ̂mn(d) = q̂(m) · kn = σ̂ij ŷm,x̂j ŷ
n
,x̂i = J−1σij ŷm,xi ŷ

n
,xj are the physical, true, stresses acting on the Cartesian

coordinate sites, i.e., the Cartesian stress-tensor components σ̂ = σ̂mn(d)kmkn.
6. Stress Rates. Let us determine the stress rates taking into account the rigid-body rotation of the

neighborhood of the material point and the rotation of the sites at which the examined stresses occur. We assume
that at the moment τ , the Cartesian coordinate sites are rotating together with the neighborhood of the point with
angular velocity vector ω = ωiki. At the moment τ + ∆τ , the sites take positions with the normals

N̂
(m)

τ+∆τ = km + ω × km ∆τ = km + (knωl − klωn) ∆τ. (6.1)

Here and below the subscript and superscript m correspond to the values obtained for the site with the normal km,
terms of order (∆τ)2 are neglected, and m,n, l is even rearrangement of the subscripts and superscripts 1, 2,

and 3. We consider elementary material sites with normals N̂
(m)

τ+∆τ and areas dŜ(m)
τ+∆τ at the moment τ + ∆τ .
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Substituting N̂ = km into (4.3), we determine (dŜ)̇ (m) = (η̂ii − η̂
(d)
m ) dŜ(m), (N̂ )̇ (m) = η̂

(d)
m km − (v,x̂i · km)̂l

i
, and

η̂
(d)
m = η̂ij x̂

i
,ŷm x̂

j
,ŷm (summation over m is not performed). From the equalities dŜ(m)

τ+∆τ = dŜ(m) + (dŜ)̇ (m)∆τ and

N̂
(m)

τ+∆τ = N̂
(m)

+ (N̂ )̇ (m)∆τ , we find approximate values of the areas and normals to the sites at the moment τ :

dŜ(m) = [1− (η̂ii − η̂(d)
m ) ∆τ ] dŜ(m)

τ+∆τ , (6.2)

N̂
(m)

= (1− η̂(d)
m ∆τ)km + [knωl − klωn + (v,x̂i · km)̂l

i
] ∆τ.

According to (4.2) and (6.2), at the moment τ = 0, the sites have areas dS(m) and unit normals N (m) = N
(m)
i li,

where

N
(m)
i =

dŜ(m)

J dS(m)
{(1− η̂(d)

m ∆τ)ŷm,xi + [ωlŷn,xi − ω
nŷl,xi + (v,xi · km)] ∆τ}. (6.3)

For the sites with the normals (6.1) determined at the moment τ + ∆τ , the force densities determined from
(5.1) are

q̂
(m)
τ+∆τ = (σij + σ̇ij ∆τ)(R̂+ v∆τ),xiN

(m)
j dS(m) (dŜ(m)

τ+∆τ )−1.

With allowance for (6.2) and (6.3), they are expressed as

q̂
(m)
τ+∆τ = {(1− η̂kk∆τ)ŷm,xj + [ωlŷn,xj − ω

nŷl,xj + (v,xj · km)] ∆τ}J−1σijR̂,xi

+ (σijv,xi + σ̇ijR̂,xi)J−1ŷm,xj ∆τ.

Using the Cartesian components of the tensors σ̂ and

ŝ = J−1σ̇ijR̂,xiR̂,xj = ŝij l̂il̂j = ŝij(d)kikj , (6.4)

we obtain the following expressions for the force densities considered:

q̂
(m)
τ+∆τ = (1− η̂kk ∆τ)σ̂mi(d)ki + [ωlσ̂ni(d) − ωnσ̂li(d) + (v,ŷj · km)σ̂ji(d)]ki ∆τ + (σ̂mi(d)v,ŷi + ŝmi(d)ki) ∆τ.

The projections of these vectors onto the normal and tangents to the sites (6.1)

σ̂
ij(d)
τ+∆τ = q̂

(i)
τ+∆τ · N̂

(j)

τ+∆τ = σ̂ij(d) + (ŝij(d) + σ̂ik(d)η̂
(d)
kj + σ̂kj(d)η̂

(d)
ik − σ̂

ij(d)η̂kk) ∆τ

are approximate values of the physical true stresses that act at the material point considered in a small time ∆τ
instead of the stresses σ̂ij(d) acting at it at the moment τ . Letting ∆τ to zero, we determine the stress rates

Σ̂ij(d) = lim
∆τ→0

1
∆τ

(σ̂ij(d)
τ+∆τ − σ̂

ij(d)) = ŝij(d) + σ̂ik(d)η̂
(d)
kj + σ̂kj(d)η̂

(d)
ik − σ̂

ij(d)η̂kk ,

which are the Cartesian components of the symmetric tensor Σ̂ = Σ̂ij(d)kikj = Σ̂ij l̂il̂j . Resolving into the basis
vectors of the curvilinear coordinate system taken at the current position of the material point, we have

Σ̂ij = ŝij + σ̂ikη̂jk + σ̂kj η̂ik − σ̂ij η̂kk . (6.5)

Writing the Cauchy stress tensor as σ̂ = J−1σij(li + u,xi)(lj + u,xj ) and differentiating it with respect to time τ ,

we obtain the expression for Σ̂ as the Jaumann stress-rate tensor [3–5], Σ̂ = (σ̂)̇ + σ̂ · Ω̂− Ω̂ · σ̂, where Ω̂ = Ω̂ij l̂
i
l̂j ,

Ω̂ij = (v̂i;j − v̂j;i)/2, and σ̂ · Ω̂ = σ̂ikΩ̂kj l̂il̂
j
. The tensor Σ̂ is determined irrespective of the properties of the

material.
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7. Equations Relating the Stress Rates to the Strain Rates in an Isotropic Hyperelastic Body.
Differentiating Eq. (3.3) with respect to τ , we obtain

σ̇ij = [(J̇p,J + Υ̇p,Υ)J + pJ̇ ]αij + [(J̇β,J + Υ̇β,Υ)β−1 − 2I−1
1 İ1]σ(1)ij

+2µ(ηij ′ − χ̇gij)− 2pJαimαjnηmn, (7.1)

where p,Υ = β,J , σ(1)ij = σij − pJαij , and ηij ′ = ηij − gijηmm/3. Using (6.4) and taking into account (1.3), (2.1),
(3.1), (3.2), and (7.1), we express ŝij in terms of σ̇ij and substitute the result into (6.5). We obtain the stress rate
equations

Σ̂ij = (J̇p,J + Υ̇p,Υ)ĝij + [(J̇β,J + Υ̇β,Υ)β−1 − 2I−1
1 İ1]σ̂ij ′

+ 2µ̂α̂imα̂jnη̂mn − µ̂α̂ij(χ̂)̇ + σ̂in ′η̂jn + σ̂nj ′η̂in − σ̂ij ′η̂mm , (7.2)

which are linear (after substitutions İ1 = α̂ij η̂ij , J̇ = Jη̂ii , Υ̇ = β−1Jσ̂ij ′η̂ij , and σ̂ij ′ = σ̂ij − pĝij) with respect to
the strain rates η̂ij with a nonsymmetric matrix of the coefficients.

In a Cartesian coordinate system with the axes directed along the principal axes of the tensors σ̂ and ê,
from (7.2), we obtain the expressions for the normal stress rates (summation over i is not performed)

Σ̂ii = J̇p,J + Υ̇p,Υ + [(J̇β,J + Υ̇β,Υ)β−1 − 2I−1
1 İ1 + 2η̂ii − η̂kk ]σ̂′i + µ̂εi[2εiη̂ii − (χ̂)̇] (σ̂′i = σ̂i − p) (7.3)

and shear stress rates (m,n, l is even rearrangement of the subscripts and superscripts 1, 2, and 3)

Σ̂mn = Bl η̂mn, Bl = 2µ̂εmεn − σ̂′l = µ̂(εm + εn)[2εmεn + εl(εm + εn)− ε2
l ]/(2I1). (7.4)

For positive values of Bl > 0, occurring, in particular, under small strains if Bl ≈ 2µ0, the values of Σ̂mn and
η̂mn have the same signs. If Bl = 0 and Σ̂mn = 0, the rates η̂mn are not determined uniquely from (7.4). If Bl < 0,
the shear stress rate and the corresponding shear strain rate should be in opposition. Therefore, satisfaction of the
inequality Bl > 0 can be considered as a condition of stable deformation of the material. At each time, just one of
the coefficients Bl can be equal to zero because for σ̂′l = 2µ̂εmεn, it must be σ̂′m = σ̂′n = −µ̂εmεn < 0. Reducing Bl
by nonnegative factors, we obtain the conditions of stable deformation

εl < (εm + εn)/2 +
√

(εm + εn)2/4 + 2εmεn,

which impose restrictions on the values of the squared principal extension ratios εm, εn, and εl and do not depend
on the form of the constitutive function Ψ and values of any material constants.

In matrix form, the Eq. (7.3) is written as

Z = DX, (7.5)

where Xt = (η̂11, η̂22, η̂33), Zt = (Σ̂11, Σ̂22, Σ̂33), and D is an asymmetric matrix of coefficients that depends only
on the values of εi at the current time. In the undeformed state of the material, the matrix D is symmetric and
positively determined, and Eq. (7.5) is uniquely solvable with respect to the strain rates. Under loading at detD = 0,
the solution of Eq. (7.5) can be nonunique and should be chosen with allowance for the existing restrictions on the
permissible stress and strain rates. At subsequent times, D can have negative eigenvalues.

For the solutions X and Z of Eq. (7.5) with components of opposite signs, a decreasing stress–strain relation
(declining curve) occurs for every principal axis: elongation of the fiber directed along the axis is accompanied by
a decrease in the stress acting in the fiber (summation over i is not performed): η̂ii > 0 and Σ̂ii 6 0; contraction
of the fiber is accompanied by an increase in the stress: η̂ii 6 0 and Σ̂ii > 0. Such deformation of the material is
considered unstable. Below, we study the deformation of an isotropic elastic material under certain simple loads
with the function Ψ derived by generalization of the constitutive function of Hooke’s law. In the solutions given
below, the eigenvalues of the matrix D are only real.

8. Deformation of an Isotropic Hyperelastic Material under Simple Loading. In Hooke’s law, the
stresses σij = 2µ0e

ij ′ + Kenng
ij , where µ0 = E0/[2(1 + ν)] and K = E0/[3(1 − 2ν)] (E0 is Young’s modulus and

ν is Poisson’s ratio) are partial derivatives σij = Ψ0,eij of the function Ψ0 = Ψ0(I2, J1) = µ0I2 + 0.5K(J1 − 1)2,
which depends on two arguments I2 = eij ′e′ij and J1 = 1 + enn. Under small strains, J1 and I2 can be treated
as approximate representations of the arguments J and Υ = I2I

−2
1 of the constitutive function Ψ for an isotropic

hyperelastic material if we take into account that J ≈ J1 and omit the factor with I1 ≈ 3/2 in the expression for Υ.
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Fig. 1

Let us determine the function Ψ which continuously becomes Ψ0 if the strain tends to zero. We specify
the pressure dependence in the form p = 0.5K(1 − J−2). With decrease in the volume of the material, the
pressure increases in absolute value without bound; as J → ∞, the pressure tends to the maximum permissible
value and as J → 1, it approaches the value determined by Hooke’s law. A given p corresponds to the function

Ψ2 =
∫
p dJ = 0.5KJ−1(J − 1)2 (p = Ψ2,J). To Ψ2, we add the term βΥ with the coefficient β = 9µ0/4, which

approximates the first term in Ψ0. As a result, for an isotropic hyperelastic body, we obtain the constitutive function
Ψ = βΥ + 0.5KJ−1(J − 1)2 with the two material constants µ0 and K as in Hooke’s law. In the thus determined
function Ψ, zeroes of the eigenvalues of the matrix D, for which, according to Eq. (7.5), there are ramification of
solutions and transition to decreasing stress–strain relations, occur at moments independent of the values of µ0

and K.
Pure shear loading occurs for σ̂i = −σ̂j , σ̂k = p = 0, and J = 1. From Eqs. (3.4), we determine

εk = (ε2
i + ε2

j )/(εi + εj) and σ̂i = βεiεj(ε2
i − ε2

j )/(ε
2
i + εiεj + ε2

j )
2. Taking into account that σ̂i > 0 and it is

a homogeneous zero-order function of εi and εj and considering the monotonic increase in εi and decrease in εj , we
introduce the parameter 0 6 ξ = 1− εj/εi 6 1 and obtain the dependences εi = {(2− ξ)/[(1− ξ)(2− 2ξ + ξ2)]}1/3,
εj = [(2− ξ)(1− ξ)2/(2− 2ξ+ ξ2)]1/3, and εk = {(2− 2ξ+ ξ2)2/[(1− ξ)(2− ξ)2]}1/3. We have εi →∞ and εj → 0,
and the value of εk approaches εi as ξ → 1. In the current state, an elementary material particle which initially is a
cube with edges directed along the principal axes of the tensor σ and e takes the form of a right parallelepiped with
one edge contracting without bound and the other two elongating without bound. The particle volume remains
constant.

The stresses σ̂i increase (see Fig. 1) up to the time when ξ = ξ∗ = 0.671457, εi = 1.53465, εj = 0.505842,
and εk = 1.28399, at which the maximum (of the order of µ0) value of σ̂i = 0.142031β is reached. In the region
ξ∗ < ξ < 1, an eigenvalue of the matrix D, vanishing at ξ = ξ∗, becomes negative. As a result, the curve in Fig. 1
becomes declining; the stresses decrease monotonically [and so do the forces acting on the cube edges, which are
required to keep the cube in the strained state and are proportional to the quantities σ̂j(εkεi)1/2 and σ̂i(εjεk)1/2],
and the deformation of the material is considered unstable. Throughout the entire deformation process, Bl > 0.
Over a wide range of variation of the values of σ̂i up to values of the order of the shear modulus, the dependence
of σ̂i on εi (solid curve in Fig. 2) is nearly linear, as follows from Hooke’s law σ̂i = 2µ0ei (dashed curve in Fig. 2).
For Hooke’s law, the length of the transverse fiber remains constant: εk = 1.

In the case of axisymmetric loading σ̂i = σ̂j and σ̂k = 0, according to (3.4), we have

µ̂(εi − εj)(εi + εj − χ̂) = 0, µ̂εk(εk − χ̂) + p = 0, σ̂i = 1.5p. (8.1)

Of the two solutions of the first equation in (8.1), only one solution corresponding to the axisymmetric strain
εi = εj can occur at the beginning of loading. Introducing the parameter −1 6 ξ = (εi − εk)/(εi + εk) 6 1,
we obtain the dependences γ = 16βξ(1 − ξ2)/(3 + ξ)3, J = γ/K +

√
(γ/K)2 + 1, εi = J2/3[(1 + ξ)/(1 − ξ)]1/3,

εk = J2/3[(1− ξ)/(1 + ξ)]2/3, and p = γ/J . Below, we give results of calculations for ν = 0.3. In this axisymmetric
solution (solid curve in Fig. 3), the stress reaches extreme values for tension (0 6 ξ 6 1) if ξ = ξ+

∗ = (2
√

7− 1)/9,
εi = 1.55687, εk = 0.551518, J = 1.1562, and σ̂i = 0.157462E0 and for compression (−1 6 ξ 6 0) if
ξ = ξ−∗ = −(2

√
7 + 1)/9, εi = 0.410525, εk = 2.31772, J = 0.624986, and σ̂i = −0.975072E0. As ξ → ±1, the

volume of the material becomes initial: J → 1 and σ̂i → 0.
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During the compression process, where ξ = ξ∗∗ = 3− 2
√

3, εi = 0.561577, εk = 1.53426, J = 0.695598, and
σ̂i = −0.666704E0, one of the eigenvalues of the matrix D vanishes and a nonaxisymmetric solution determined
from (8.1) branches off from the axisymmetric solution: εi + εj = χ̂, εk = (εi + εj)/2 +

√
(εi + εj)2/4 + 2εiεj , and

p = −2µ̂εiεj . Introducing ζ1 = (εi+ εj)/2 and ζ2 = 2ζ−2
1 εiεj , we obtain the expressions γ = −4βζ2/(3 +

√
1 + ζ2)2,

J = γ/K +
√

(γ/K)2 + 1, ζ1 = {2J2/[ζ2
(

1 +
√

1 + ζ2

)
]}1/3, εi = ζ1(1 −

√
1− ζ2/2 ), εj = ζ1(1 +

√
1− ζ2/2 ),

εk = ζ1(1 +
√

1 + ζ2 ), and p = γ/J , in which 0 6 ζ2 6 2. As ζ2 → 0, we have εi → 0 and εj → ∞. The volume
of the material increases monotonically, approaching the initial value, and the stress tends to zero (J → 1 and
σ̂i → 0 as ζ2 → 0) (dashed curve in Fig. 3). Under nonaxisymmetric deformation, the stress state (σ̂i = σ̂j) remains
axisymmetric. For −1 < ξ < ξ∗∗ and ξ+

∗ < ξ < 1, the nonaxisymmetric deformation, as well as the axisymmetric
deformation, is unstable and occurs with decreasing absolute values of the stresses σ̂i, which are smaller than those
in the axisymmetric solution. The values of ξ+

∗ , ξ−∗ , and ξ∗∗ are independent of the material’s constants.
We consider an elementary material particle which initially has the shape of a cube with edges directed

along the principal axes of the tensors σ and e. Under axisymmetric tensile strain at the limit, it becomes a square
plate with an unrestrictedly decreasing thickness and elongating sides. Under axisymmetric compressive strain, it
becomes an unrestrictedly elongating prism with square cross section and surface area approaching zero. In the
nonaxisymmetric solution branches off under compression, the prism cross section is no longer square: one side of
the cross section lengthens unrestrictedly, and the other side shortens unrestrictedly. The prism becomes a square
plate located on the axial plane. At the limit, the forces required to keep the cube in the strained state tend to zero
as well as the stresses.

Similar results are obtained for the case of uniaxial loading by stress σ̂i for σ̂j = σ̂k = 0. In the axisym-
metric solution εj = εk, −1 6 ξ = (εi − εj)/(εi + εj) 6 1 (solid curve in Fig. 4) determined from the equations
µ̂(εj − εk)(εj + εk − χ̂) = 0, p = 0.5µ̂εi(εi−χ̂), and σ̂i = 3p, the curve declines under compression if ξ = (1−2

√
7)/9,

εi = 0.47695, εj = 1.34637, J = 0.929825, and σ̂i = −0.195797E0 and under tension if ξ = (1+2
√

7)/9, εi = 3.72429,
εj = 0.659662, J = 1.27304, and σ̂i = 0.4787E0. Under tension, when ξ = 2

√
3 − 3, εi = 2.21003, εj = 0.808927,

J = 1.20256, and σ̂i = 0.385641E0, a nonaxisymmetric solution, shown by the dashed curve in Fig. 4, branches off
from the axisymmetric solution.
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Let us consider the behavior of σ̂i for transverse fibers of constant lengths: εj = εk = 1. From (3.4), we
obtain p = 0.5K(1 − ε−1

i ), σ̂i = 8βε1/2
i (εi − 1)(2 + εi)−3 + p, and σ̂j = σ̂k = (3p − σ̂i)/2, whose dependences on

the parameter −1 6 ξ = (εi − 1)/(εi + 1) 6 1 are shown in Fig. 5 (solid and dashed curves, respectively). Under
compression, the stresses increase in absolute value without bound; under tension, the value of σ̂i > 0 grows, reaches
a maximum, and then decreases and σ̂j increases. The deformation of the material is considered stable.

For all the loading cases considered above, ramification of solutions and transition to declining diagrams
with unstable strains occurs for detD = 0. For nonunique solutions and solutions with declining diagrams, among
the eigenvalues of the matrix D there are negative values. In the regions of stable deformation, the stress–strain
diagrams are nearly linear over a wide range of stresses.

The author is grateful to L. V. Baev, E. V. Mamontov, S. N. Korobeinikov, and V. D. Kurguzov for their
helpful discussions.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-00525).

REFERENCES

1. V. N. Solodovnikov, “Constitutive equations of an isotropic hyperelastic body,” Prikl. Mekh. Tekh. Fiz., 41,
No. 6, 178–183 (2000).

2. A. J. McConnell, Application of Tensor Analysis, Dover Publ., New York (1957).
3. S. N. Korobeinikov, Nonlinear Deformation of Solids [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk

(2000).
4. A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Large Elastoplastic Deformations [in Russian], Nauka, Moscow

(1986).
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